

MICROCONTROLLERS Feb 25, 2005

Audio Filtering with the MAXQ2000

The combination of a multiply-accumulate unit (MAC) and a single-cycle core make the
MAXQ2000 a versatile microcontroller (µC). The MAXQ2000 has the performance and I/O
peripherals ideal for many applications: alarm clocks, handheld medical devices, digital
readouts—any application that requires low power, high performance, and numerous I/Os.
With the integrated MAC, the MAXQ2000 ventures into the territory of the DSP (µC).

Just how much performance can the MAXQ2000 get out of its MAC? This application note
explores that question with an audio-filtering example, and gives some quantitative
guidelines on the performance supported by the MAXQ2000.

Software and Hardware Requirements
This application note features a simple demonstration of an audio filter. The audio data is a prerecorded message
of the author saying "The pipe began to rust while new." This text was not selected randomly—it provides a decent
mix of frequency components, accentuating the audible effects of simple filters
(http://www.cs.columbia.edu/~hgs/audio/harvard.html). The audio recording can be replaced by any 8kHz recording
of appropriate length, but it is not required.

The hardware required for this application note includes the MAXQ2000 evaluation kit and a small circuit to
interface to a computer speaker.

The MAXQ2000 evaluation kit which is available, is a good tool for exploring the MAXQ2000's capabilities. It
includes an LCD panel, LED bank, and access to all the I/O pins of the MAXQ2000 µC. It also includes a MAX1407
ADC/DAC, which can be used for audio output.

The second piece of hardware required can be easily breadboarded. The circuit that was used for this
demonstration is shown in Figure 1. It calls for a 1 x 8 female header to connect to the MAXQ2000 evaluation kit
board at J7, and another connection to any ground (TP1 on the MAXQ2000 evaluation kit is a good choice). The
speaker connector can be of any type—shown is a 3.5mm stereo jack, which makes it simple to connect to typical
computer speakers. Note that the two input channels are tied together, as our demonstration application is only
showing one audio channel (mono sound).

Figure 1. Additional Hardware Required for Audio Playback

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en
http://www.cs.columbia.edu/~hgs/audio/harvard.html
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4478

The software required to run this demonstration was built and debugged using the IAR embedded workbench. It
provides a good debugging environment, making use of the hardware debugging support of the MAXQ2000. You
can set breakpoints, set and read registers and memory, and see your call stack while running on the real
hardware.

Running the Demo Application
The pushbuttons on the MAXQ2000 evaluation kit board are used to select a filter, and to play the audio sample
passed through that filter. Use button SW4 to select a filter—the name of the filter will be displayed on the LCD
screen (HI for high pass, LO for low pass, BP for band pass, ALL for all pass). Use the SW5 button to begin playing
the audio through the selected filter. The filter can be changed during the middle of playback.

Designing a Simple FIR Filter
I developed a Java™ applet that would let me easily create new filters. Rather than use standard windowing
techniques given filter parameters, I chose to 'design' my filter grossly by placing zeroes in a pole-zero plot, as
shown in Figure 2. The applet allows placing zeroes anywhere in the coordinate plane, and continually updates the
FIR filter coefficients required by the demonstration application. Note, however, that the demonstration only
supports all-zero filters. Supporting IIR filters would not be too difficult—more is explained in the Supporting IIR
Filters section.

Figure 2. Using a Pole-Zero Plot to Generate a Simple FIR Filter

A generic filter takes the form of a linear equation:

y(n) + bKy(k) = aJx(j)

where k represents the order of the feedback portion of the filter and j represents the order of the feed-forward
portion of the filter.

An example IIR filter could be something as simple as:

y(n) = 0.5y(n-1) + x(n) - 0.8x(n-1)

Some filters are classified as FIR filters. They do not contain the feedback portion. In other words, there is no y
portion in the characteristic filter equation:

y(n) = aJx(j)

y(n) = x(n) - 0.2x(n - 1) + 0.035x(n - 3)

In either case, a filter boils down to a characteristic equation that is essentially a weighted average of some number
of the past input and output values. The job of filter design is to produce those Aj and Bk values. In order to

compute the output of a filter efficiently, we need hardware support that can multiply and sum signed numbers
quickly. Enter the MAXQ2000's multiply-accumulate unit.

Implementing a Filter with a Multiply-Accumulate (MAC) Unit
The applet from the previous section works by computing the filter coefficients given the zero coordinates in the
plot. However, the coefficients computed are floating-point numbers, while our MAC works with purely 16-bit
integer math. In order to correct the problem, the demo application uses a fixed-point number system, where
between 0 and 15 bits of the coefficients are to the right of the decimal point (the 16th bit represents the sign
magnitude). Once the operation is over, the 48-bit result in the MAC's accumulator is shifted enough places to
remove any fraction.

This solution is a tradeoff of accuracy for speed. In many cases, the error from this approach is negligible. For
diagnostic purposes, the applet shows three plots of the calculated filter. The first plot shows the ideal filter
behavior, using 64-bit floating-point numbers. This plot, labeled "Ideal Transform", is shown in Figure 2.

Figure 3 illustrates the remaining plots produced by the applet. The first plot in Figure 3 shows the effective filter
using 16-bit, fixed-point numbers. In many cases, the error is not apparent, so the last plot is an error indicator,
showing the ideal behavior divided by the actual frequency response. Ideally, this is a straight line at Y = 1.

Figure 3. Actual Transform and Round-Off Error (with Virtually No Error) for a 16-Bit Implementation of the Filter

For simplicity, the applet produces the floating-point coefficients required by the MAXQ application, so that new
filters can simply be cut-and-pasted into the source for the filter application (into the file data.asm). The applet also
produces two other values—the order of the filter (the number of coefficients) and the shift count, so the application
can shift the final result appropriately. This data appears in the text box at the bottom of the applet, and might look
like this:

Zeroes:
 dc16
 dc16 12, 11, 0x1000, 0x26d3, 0x1e42, 0xf9a3, 0xecde, 0xff31, 0xa94,
 0x2ae, 0xfd0c, 0xff42, 0xde
Shift amount: 12

Implementing a Filter in MAXQ Assembly Language
In order to get maximum performance and perform an accurate performance analysis, the actual filter will be
implemented in assembly language. This will allow us to accurately count the number of cycles required to produce
one output value, and thus estimate the performance for other data sets.

The MAX1407 has a 12-bit ADC. However, the input data is 16-bits wide, and our filter produces a 16-bit result. So,
while those 4 least significant bits (LSBs) are wasted for this application, we can safely analyze our performance as
if working on and producing 16-bit values (CD-quality audio is 16 bits).

In this example, the filter coefficients are stored in code space in a table. When a filter is selected, the application
finds the appropriate filter, reads the shift amount and number of taps, and is then ready to start filtering data. The
following code applies the filter coefficients:

 move MCNT, #22h ; signed, mult-accum, clear regs first

zeroes_filterloop:
 move A[0], DP[0] ; let's see if we are out of data
 cmp #W:rawaudiodata ; compare to the start of the audio data
 lcall UROM_MOVEDP1INC ; get next filter coefficient
 move MA, GR ; multiply filter coefficient...
 lcall UROM_MOVEDP0DEC ; get next filter data
 move MB, GR ; multiply audio sample...
 jump e, zeroes_outofdata ; stop if at the start of the audio data
 djnz LC[0], zeroes_filterloop

zeroes_outofdata:
 move A[2], MC2 ; get MAC result HIGH
 move A[1], MC1 ; get MAC result MID
 move A[0], MC0 ; get MAC result LOW

Before this code is executed, LC[0] is set up with the number of taps for the filter, DP[0] is set up with the address
of the current input byte to the filter, and DP[1] points to the start of the filter coefficients. Therefore, DP[1] works
through the filter coefficients in an incrementing manner, and DP[0] works through the input data in a decrementing
manner (processing the most recent input first).

Since the MAC works in a single cycle, there is not a lot of code here to handle it. MCNT is set to 22h to denote the
use of signed integers. In the main loop, the consecutive writes to MA, then MB triggers the multiply-accumulate
operation—the result is ready in the next clock cycle. Since our accumulator is 48 bits (and our multiply result is 32
bits), we need not worry about any overflow (unless we have 64,000 taps in our filter!)

Performance
The sample application works on mono 16-bit audio data being output at 8kHz—not nearly enough to tire out the
µC. Because we wrote the filter in assembly language, we can easily count the cycles being used to come up with
an expression for the amount of time a FIR filter of length N takes to compute. We can then use this expression to
find the maximum filtering rate using the algorithm previously listed.

We can split the function we use to produce an audio sample into three portions: initialization, filter computation
loop, and result fixing. In our released example, the initialization takes 38 cycles, the filter computation loop takes
17 cycles per filter coefficient, and the result fixing takes 9 + (6 x S) cycles, where S is the shift amount. Normally,
the shift amount is around 12, so we can estimate result fixing at 81 cycles. Therefore, it takes 119 + (17 x N)
cycles to produce one filtered output value. At 20MHz, a MAXQ2000 could run a 100-tap filter at close to 11kHz,
which is good enough quality for voice data.

Let us go back and reanalyze our application to see where we could tighten it up. We will concentrate in the filter
loop, since this is where most of our cycles are happening on any but the most trivial of filters.

There are a few critical improvements we can make to the loop code to improve efficiency. Remember that we are

using prerecorded audio samples that are stored in code space. Lookups to code space require more time than
lookups in data space because of the MAXQ's Harvard architecture. The functions called UROM_MOVEDP1INC
and UROM_MOVEDP0DEC take 5 cycles each (2 cycles for the LCALL, then 3 cycles inside the function). These
could each be replaced by two cycles each if we stored our filter in the RAM (one cycle to select the pointer, one to
read from it), and if we were serving real-time input data that was stored in the RAM. If we were willing to donate
256 words of RAM to the filter, we could implement a circular buffer using BP[Offs] to store the input data. These
changes reduce the loop time to 11 cycles instead of 17. Our filter loop now looks like this (cycle counts listed first
in the comments):

zeroes_filterloop:
 move A[0], DP[0] ; 1, let's see if we are out of data
 cmp #W:rawaudiodata ; 2, compare to the start of the audio data
 move DP[1], DP[1] ; 1, select DP[1] as our active pointer
 move GR, @DP[1]++ ; 1, get next filter coefficient
 move MA, GR ; 1, multiply filter coefficient...
 move BP, BP ; 1, select BP[Offs] as our active pointer
 move GR, @BP[Offs--] ; 1, get next filter data
 move MB, GR ; 1, multiply audio sample...
 jump e, zeroes_outofdata ; 1, stop if at the start of the audio data
 djnz LC[0], zeroes_filterloop ; 1

Once we have our filter and input data in the RAM, we can use another trick of the MAXQ architecture. The MAXQ
instruction set is highly orthogonal—there are very few restrictions on what can be used as a source in any
operation. Therefore, rather than reading the filter data and the input data into GR, we can write it directly to the
MAC registers. This brings the loop down to 9 cycles.

zeroes_filterloop:
 move A[0], DP[0] ; 1, let's see if we are out of data
 cmp #W:rawaudiodata ; 2, compare to the start of the audio data
 move DP[1], DP[1] ; 1, select DP[1] as our active pointer
 move MA, @DP[1]++ ; 1, multiply next filter coefficient
 move BP, BP ; 1, select BP[Offs] as our active pointer
 move MB, @BP[Offs--] ; 1, multiply next filter data
 jump e, zeroes_outofdata ; 1, stop if at the start of the audio data
 djnz LC[0], zeroes_filterloop ; 1

One final improvement can make this code really fly. Every time through the loop, we compare our current data
pointer to the start of the audio-input data to see if we are going out of bounds (the MOVE A[0], DP[0] statement,
the CMP compare statement, and the JUMP E statement). If we set the initial audio data (which we are now
reading with the circular buffer pointed to by BP[Offs]) to all zeroes, we can simply remove these checks. The cost
of initializing the RAM to 0 is negligible, as compared to the 4-cycle savings over the next several thousand
samples. Our new loop code is a slim 5 cycles.

zeroes_filterloop:
 move DP[1], DP[1] ; 1, select DP[1] as our active pointer
 move MA, @DP[1]++ ; 1, multiply next filter coefficient
 move BP, BP ; 1, select BP[Offs] as our active pointer
 move MB, @BP[Offs--] ; 1, multiply next filter data
 djnz LC[0], zeroes_filterloop ; 1

Before going back to our performance equation, let us look at the result computation. Our current way of shifting
the 48-bit result down seems wasteful.

 move A[2], MC2 ; get MAC result HIGH
 move A[1], MC1 ; get MAC result MID
 move A[0], MC0 ; get MAC result LOW
 move APC, #0C2h ; clear AP, roll modulo 4, auto-dec AP

shift_loop:
 ;
 ; Because we use fixed point precision, we need to shift to get a real
 ; sample value. This is not as efficient as it could be. If we had a
 ; dedicated filter, we might make use of the shift-by-2 and shift-by-4
 ; instructions available on MAXQ.
 ;
 move AP, #2 ; select HIGH MAC result
 move c, #0 ; clear carry
 rrc ; shift HIGH MAC result
 rrc ; shift MID MAC result
 rrc ; shift LOW MAC result
 djnz LC[1], shift_loop ; shift to get result in A[0]
 move APC, #0 ; restore accumulator normalcy
 move AP, #0 ; use accumulator 0

One possible solution is to use our MAC once again. Rather than shifting right by 12 (or any value between 0 and
16), we can shift left by 16 minus that amount (i.e. shift left by 4). This will put our result in the middle 16-bit word of
the MAC's registers. Note that our shift left will actually be accomplished with a multiply-by-2 to some power (24, in
the case where our original shift right was supposed to be 12).

 ;
 ; don't care about high word, since we shift left and take the
 ; middle word.
 ;
 move A[1], MC1 ; 1, get MAC result MID
 move A[0], MC0 ; 1, get MAC result LOW
 move MCNT, #20h ; 1, clear the MAC, multiply mode only
 move AP, #0 ; 1, use accumulator 0
 and #0F000h ; 2, only want the top 4 bits
 move MA, A[0] ; 1, lower word first
 move MB, #10h ; 1, multiply by 2^4
 move A[0], MC1R ; 1, get the high word, only lowest 4 bits significant
 move MA, A[1] ; 1, now the upper word, we want lowest 12 bits
 move MB, #10h ; 1, multiply by 2^4
 or MC1R ; 1, combine the previous result and this one
 ;
 ; result is in A[0]
 ;

This will let us take our result computation to 12 cycles, rather than 9 + (6 x S) cycles.

Now let us plug back into our earlier equation. Our new equation uses a conservative estimate of 40 cycles of
overhead and 5 cycles per loop iteration. Using the same example as earlier of a 100-tap filter, the MAXQ2000
could process 16-bit, mono audio data at 37kHz, as seen in Table 1.

Table 1. Maximum FIR Filter Sample Rates (20MHz MAXQ2000, Looping)

Filter Length (Taps) Max Rate (Hz)

50 68965.51724

100 37037.03704

150 25316.4557

200 19230.76923

250 15503.87597

300 12987.01299

350 11173.18436

There is one more performance improvement that we can implement for applications in which a higher sampling
rate is required and code space can be sacrificed. We can 'in-line' the filter coefficients, which eliminates both the
need to select active pointers and the need to loop (this technique is also known as loop unrolling). The price of this
change is increased code space—previously, our 100-point filter took 100 words to store; now it will take 300 words
to store (2 words for each coefficient move, 1 word for each data value move). In a 16 kilo-word device, this may be
an insignificant price for the performance benefit. The new code might look something like this:

 move BP, BP ; select BP[Offs] as our active pointer
zeroes_filtertop:
 move MA, #FILTERCOEFF_0 ; 2, multiply next filter coefficient
 move MB, @BP[Offs--] ; 1, multiply next filter data
 move MA, #FILTERCOEFF_1 ; 2, multiply next filter coefficient
 move MB, @BP[Offs--] ; 1, multiply next filter data
 move MA, #FILTERCOEFF_2 ; 2, multiply next filter coefficient
 move MB, @BP[Offs--] ; 1, multiply next filter data
 . . .
 move MA, #FILTERCOEFF_N ; 2, multiply next filter coefficient
 move MB, @BP[Offs--] ; 1, multiply next filter data
 ;
 ; filter calculation complete
 ;

To calculate the performance benefit of this change, we again assume 40 cycles of overhead, but now there are 3
cycles per loop iteration, though we have truly eliminated the loop. The 100-tap performance limit now sits at 58kHz
(see Table 2).

Table 2. Maximum FIR Filter Sample Rates (20MHz MAXQ2000, Unrolled Loop)

Filter Length (Taps) Max Rate (Hz)

50 105263.1579

100 58823.52941

150 40816.32653

200 31250

250 25316.4557

300 31250

350 27027.02703

Supporting IIR Filters
Though this application note does not demonstrate the use of IIR filters, there is no reason the MAXQ2000 cannot

support them. The changes involved would be to:

● Dedicate a segment of RAM to store the latest output samples (this would be most efficiently implemented
as a circular buffer, using the BP[Offs] register in a manner similar to that described previously)

● Include the characteristic filter coefficients for the feedback (the 'y' portion) of the filter
● Add another loop that continues to accumulate products that are the result of the feedback portion of the

filter

While adding another loop may sound like a performance hit, it might not necessarily be. Although it will require
more time to compute one output of the filter, IIR filters often require fewer taps (a smaller value for N) to compute
an output value.

Conclusion
The MAXQ2000's performance and peripherals make it a great, general-purpose µC. It can be used anywhere a
fast, versatile µC is required, especially in applications requiring user interaction. The effective use of the MAC
gives the MAXQ2000 some digital-filtering capability, making the MAXQ2000 one of the most versatile µCs around.

Relevant Links

● MAXQ Home Page
● MAXQ Family User's Guide
● MAXQ2000 User's Guide Supplement
● Dallas Semiconductor Microcontroller Support Forum
● Source code and support applications used in this application note

Java is a trademark of Sun Microsystems.

More Information

MAX1407: QuickView -- Full (PDF) Data Sheet -- Free Samples

MAXQ2000: QuickView -- Full (PDF) Data Sheet -- Free Samples

MAXQ2000-KIT: QuickView -- Full (PDF) Data Sheet

http://www.maxim-ic.com/MAXQ/
http://www.maxim-ic.com/products/microcontrollers/pdfs/MAXQUG.pdf
http://www.maxim-ic.com/products/microcontrollers/pdfs/MAXQ2000_UG.pdf
http://discuss.dalsemi.com/
ftp://ftp.dalsemi.com/pub/microcontroller/maxq/maxq2000/examples/audiodsp.zip
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3182/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1407-MAX1414.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAX1407&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4466/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAXQ2000.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAXQ2000&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4478/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAXQ2000-KIT.pdf

